A set-theoretical representation for weakly idempotent lattices and interlaced weakly idempotent bilattices
نویسندگان
چکیده
منابع مشابه
Commutative Idempotent Residuated Lattices
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. A residuated lattice is an algebra A = (A,∨,∧, ·, e, /, \) such that (A,∨,∧) is a lattice, (A, ·, e) is a monoid and for every a, b, c ∈ A ab ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The last condition is equivalent to the fact that (A,∨,∧, ·, e) is a lattice-ordered monoid and for every a, b ∈ A there is a great...
متن کاملRepresentation theorem for interlaced q-bilattices
Annotation. It is proved in this work that every interlaced q-bilattice is isomorphic to the superproduct of two q-lattices.
متن کاملRepresentable Idempotent Commutative Residuated Lattices
It is proved that the variety of representable idempotent commutative residuated lattices is locally finite. The n-generated subdirectly irreducible algebras in this variety are shown to have at most 3n+1 elements each. A constructive characterization of the subdirectly irreducible algebras is provided, with some applications. The main result implies that every finitely based extension of posit...
متن کاملSOS Rule Formats for Idempotent Terms and Idempotent Unary Operators
A unary operator f is idempotent if the equation f(x) = f(f(x)) holds. On the other end, an element a of an algebra is said to be an idempotent for a binary operator if a = a a. This paper presents a rule format for Structural Operational Semantics that guarantees that a unary operator be idempotent modulo bisimilarity. The proposed rule format relies on a companion one ensuring that certain te...
متن کاملVarieties of Interlaced Bilattices
The paper contains some algebraic results on several varieties of algebras having an (interlaced) bilattice reduct. Some of these algebras have already been studied in the literature (for instance bilattices with conflation, introduced by M. Fitting), while others arose from the algebraic study of O. Arieli and A. Avron’s [1] bilattice logics developed in the dissertation [16]. We extend the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Mathematics
سال: 2016
ISSN: 2199-675X,2199-6768
DOI: 10.1007/s40879-016-0110-8